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In this work the mechanics of the Special Theory of Rel-

ativity are extended to systems having a rest mass chang-

Lug in time (rockets). The principles of momentum and

energy are investigated as well as the law of the decrease

of mass of an arbitrarily accelerated rocket in free space

without external forces, and in fact in the system of the

stationary observer on earth and in the system of the

astronaut moving with the rocket. Then two special cases

are treated_ namely_ the motion of a rocket with constant

self-acceleration and the motion of a rocket with constant

thrust.

I. Derivation of the Relation between Acceleration and Self-acceleration

of a Rocket from the Lorentz Transformations

If one considers a stationary co-ordinate system K rr(x, y, z) ; t] and
"! t t " l "

a uniformly moving system K [r (x, y,z');t'], which is moving with a

constant velocity D parallelto the system K (velocity of the system), then

the transition from one system to the other is given by the general

*Translated from Astronautica Acta, vol. II_ no. i, 1956,

pp. 30-47.

**Stuttgart-Bad Cannstatt, T_Izerstrasse lO/I, West Germany.



Lorentz transformation [i ] :

=3- i_,_

or conversely

J/ m

(rv)
¢2

a

t'+ (r' o)

r--r'+u - v2-1-_ + ' t=

(t)

(z)

with the abbreviations (c --- velocity of light)

_2_ _2

In this connection

w= _ relative to the system Kand the velocity W'= _"relative to the

system K', then from differentiation with respect to time of Equations

(1) and (Z) there follow the relat±ons:

J(wv_(2-- l)+l}dr' dr'/dt ma -- v'[ v_t

dt' dt'/dt 1 (w v)
C 2

and

r = r'=O for t=t'=O. If a point has the velocity

_,, { <w'_) 1dr dr�d( _ +u -- v: (,l-- 1)+ l/

, (w' _)dt dt/dt' 1
C 2

(3)

(4)

as foundation for therelativistic kinematics, in which

dr'dr al { 1 (m.).}c

If wi[u, , or w'i]_ , then the addition theorem f_r velocities reads

(s)

ID--D
W t __ .... °

1
C 2

or, respectively,

EL) ! -_- D

W z --

(w'o)
£2

<
1 (w v) = c

1 - --c2

(6)

1_,1=_ l- )+!wo) <c. (7)

For relativistic dynamics one needs the accelerations, which are obtained

by differentiating Equations (3) and (4) with respect to time:
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b' -- dw' _ dw'/dt __ a2 c2 !

dt' dt'/dt {1 -- (w _)t s
c 2 !

or respectively,

(8)

b = _ - _' - d,_/dt' _ ,_ -c_-/ _ / + _+ a (91

dt dt/dt' (1+_-/(w'_)]s
1

These equations are now to be applied to the motion of a fast rocket. At

time t let the rocket have the speed D relative to the system K of the sta-

tionary observer on Earth (e.g. at tile position of origin). Let the starting

point of the moving system K _ of the astronaut now be taken in the rocket

(space ship occupants). The system velocity with which the system K p

moves relative to the system K is therefore equal to the velocity v of the

rocket in the system K. If m = v is inserted into Equation (3), then we

obtain m' =: 0. (traflsformation to stationary state). In the system K Iof the

astronaut the velocity of the rocket is therefore m' :_. Furthermore,

from Eq. (5) there follows

dr' 1 [- v 2 /_2
dt = [/' 1 = 1 -- = (t. (t0)

The time t I belonging to the system K t is also called the iocal time or the

proper time T. The acceleration in the stationary system Ktis yielded if

m is set -- D in Eq. (8), that is

(m_) _ (roD)
.... am ± (1 a)aria+ c2 l-_-a ' v _ _ --

h':w'= = (ti)
C_3 G 3

If _i l[ 0, then it follows that

whereas for m I D

b' = _,' = _' - _0 ' (i z)
a a (1 -- fl2)ai2

,b ,;,
b'=w'= =

._ f; a,. (i 3)

Since the system of the astronaut is coupled to the rocket, v and a =l../i -- _-,2/c2

are now functions of the time t. Consequently, with w -- u, it now turns out:
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If _ [[0° then with regard to Eqs. (i4) and (i2) for an accelerated system

the following is true:

But for wl 0, from Eqs. (t4) and (i3), there follows:

-- = (_ bl _(i

gt ,/F--v_ _ 2-i . (t 6)

F
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II. The Thrust and the Law of the Decrease of Mass of an Arbitrarily

Accelerated Rocket in Free Space without External Forces

In the following the data for the rocket and for the discharged gases

in the system K of the stationary earth observer {e.g. at the starting place)

are to be marked without an index and those _n the system K 0 of the astronaut

moving with the rocket with the index 0, as i._ done in Table i.

Table i

Velocity of rocket ...... ......

Actual mass of rocket .........

Velocity of discharged gases .....

Mass of discharged gases .......

Element of time ..............

_cceleration of rocket .........

Force or thrust of rocket ........

In system K

of stationary

earth observer

m -

a --

dt

a 0 -- 7)

a o u
] -- __

c 2

dlno_

dto

Vi -- v'/c'

b = _o (1 -- vz/cz)sl _

d dm
y/(m_-) = - a_7 =F

In system K 0

of moving

astronaut

D_o

a o

dm o
mobo = _ a o- = F o

dl o

b o

dt o

dmo
]/I -- ao_/C '"
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If m 0 is the rest mass of the rocket and dm0* the rest mass of the
discharged gases, then the mass of the rocket and respectively the mass

of the gases in the system K of the earth observer are:

F
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m° din°* ( i 7 )
m -- __ v2/c2, , respectively dm -- Vi __ a2/'c2

In this system the momentum principle reads

=: = -- a d

.....1 z'2/'c2 l/i -- a2/c 2
(t8)

or in view of Eq. (i7)

d dm
dS(m°) -aat _ (t9)

In this connection 3 is the force of thrust of the rocket in the system of

the earth observer. From application of the relativistic addition theorem

for velocities we obtain, if the thrust acts in the direction of the velocity

thus

or

(_ = --__
O0--O fl-_O

(OoD_ , or conversely, °°- (au)' (20)1
c2 1 + c_-

d(mt)) = todd + vdm : -- adm --
a 0 -- O

dn,$

mdu=-- (a+_)dm=--

Z! 2

(l )a 0 -- 0 C 2

(_oi,) + _ _m = - ao- din.
c2 1 (% 0)

C 2

Therewith we have

dm

m

1 (%v)
C 2

ao (1 -- v2/c 2)
d_ p. (z_)
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Now, because of Eq. (t7)

V2

_m_ 1'"_-_","c_t _0 t --_° ÷ /i-
., mo _[;i_- ;_! _o

(_ d_) (aou)
dm o c2 dm o c2

-- -T- = -- -- "

m 0 1 -- v2/c 2 m o ao (1 - v :/c2)

.....d(, )

If Eq. (2t} is inserted into Eq. (22), there follows immediately (%lID)

dm 0 : __ dv

m 0 a0 (1 -- v 2 c°')

(Z2)

(23)
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For constant ao this equation can be easily integrated.

mass of the rocket at time t-_0 (v =0), there results

v

j l___v

m0 C C

0

If M 0 is the rest

c In 1 + v/c
7ao 1 -- v/c

or

c

m0 _ ____ ,

K U+rj
(24)

or eonversely_

V

C

-1 q- |m°| r
L%!

{2S)

The relation (24), foundby J. Ackeret [2] (t944) can be transformed by

means of the relations B:v/c= [/1- a2 or a= l,/i-v2/c _ : y 1_/72 into

m0_l_-_1< ivY1_.I o 1_
_oo [1 +/_l = tTT-FI ::llG-y_2;q " (Z6)
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The relativistic basic equation for the rocket (24) becomes in classical

physics (v/c--_0) the well-known formula:

since

v

2_f 0 aj 'Ur _ -- = e vi z. In r = --,
m 0 a0

in 1 4- -- In 1 --

limlnr-- lim v lira v 1 +v/c 1--v/c v
a 0 U o a0v --*0 t-- --_0 2 -- v __.0a0 -

¢ ¢ C c

If one sets x=v/c(0<_ x<_ 1) i) and y= l/r=mo/M o(0<= y_ 1),then according to

Zq. (z4):
c ¢

_l-,-xb y,=_
Y --[I + xJ' ao(l_- x)2[l + xJ

2 c- ± -2

(_T _t,ti-_j • 2_ - x.

An inflection point (y"=0) appears for

Xw --

¢

ii-+I,l_c and )'_' = = [ 1 + x_ J

2ao + _LI

in case %>cf2 holds. In the most favorable case a0 _---c (photons) we get

x., = 1/2 and y. : l/V _, that is the inflection point appears when v = c/2

and r = V _.

Because of relation (20) there follow the relations

(av)l (i (---%cV)):l--V2 (1 + _)" (1-- _):1 -z '_1 + c_- ] " -- c2 c 2
(Z7)

and

i"i -- a2fc2 1"1--V21C2 -- 1 + (av)
¢2

(28)

A comparison of Eq. (2i) and (22) indicates that

[ (% v)ldm° "d_mm=m 1--c_-]moo '
(Z9)
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thus because of Eq. (28) and (t7)

c2 V i- aJlc_

_o- '- _ j,,,o V_-_lc2::il_-_Ic_
(30)

and with reference to Eq. (i7)

dm0* (3i)
dm0 -- l/___ ao2tC2"

F
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This is thus the mass of the discharged gases in the system K 0 of the astro-

naut traveling with the rocket. The thrust force 30 in this system should be

derived now. According to Eq. (10)

dt o : dt V-1 _ _2/c 2 (32)

and,. in case the acceleration b = 6 _ "_ acts in the direction of the velocity

D, according to Eq. (i5)

d-t '1 _ v2fc2 --( _/c2)3i2 -- (i- v'>fc2)3i2- b° (33)

Upon application of both of these last relationships Eq. (18) then yields

3=-dt 71_ vZtc2]-(l_v2/c2)3/z+ V1--_,_/c2-d_-=m°b°+vd'o" (34)

On the other hand, according to Equations (t9_, (30), (Z0), and (32):

1 (.o'_)
dm c 2 dmo dm o dm o dm o

7_o= - Oomo+_ dto" (35)

A comparison of the two Eqs. (34) and (35) yields for the thrust force

of the rocket in the system of the astronaut (space ship occupants}

m o v dm o _ dmo*/dto

tl _ vZtcZ)S/_ -- mo bo = 3o --= -- % dt° °o Vi _ aoi/C2

_0

(36)
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Furthermore. there follows from Eqs. (35) and (36)

a o

If v = a0 is thereby attained, then a becomes --0 and likewise also

3 = 0. From the technical point of view the primary thrust force 30 of the

rocket in the stationary system K 0 is naturally the matter of primary

interest. If we transform Eq. (36) in the following manner:

_, dv
dmo _ bo dt ° = -- ,
mo a0 a0 (1 -- z'2/c2) 3/2dr° = ao (1 -- v2/c 2)

then we obtain Eq. (23) again. From Eqs. (36) and (37) there follow further

the relations

m o is m b mb

_0 =mO bO = _1 -- Z'2/C2) 3t2 = 1 -- v2/c 2 = -1 -- v2/c z

and

3= 1-- " _o-- 1___ m_= l+v/a

That is
3<m_<3o.

Finally there should still be derived the energy principle.

E o = m o c2 (38)

is the total energy of the rocket in the system K 0 of the astronaut and

E = m c 2 mo c2 E°

V1-- vz/c z Vl -- vz/c z (39)

that in the system K of the earth observer. From Eqs. (30) and (32) there

r e suit s

- - _ ' t40)
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accordingly also

d_- = 1 -- dto, (4t)

or because of Eq. (36) also

dE dE o din° dEo 2_ (v 30).
dt dt° (%v) dt° -- dto . (4Z)

F
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The energy principle can, according to that, be written:

aE aEo aE_,. _ (i- l 'i _ ;_Tc_)a& .
(U _o) -- dt dto -- dt dt o (43)

in connection with this

Eki,, E -- E o = (m - mo) c2= mc 2 (l - y l-v2/ca) =

=re°c2 1-- _,2)c2 1 = _ 1 +-i_ff + ...

(44)

is the kinetic energy. The energy principle tht.s signifies that the work done

by the force of the thrust per unit of time is equal to the change in energy of

the system per unit of time. For systems having a rest mass constant in

time the energy principle in the well-known foim follows immediately

dE dEk,,,
(v3)=_-= dt

The generalized energy principle (43) can, in view of Eq. (34), also be

written in the following manner:

(u 3) = (u 30) + v2dm° v2 '!EO --
d_° =(O3O)+c 2 ao
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III. Motion and Mass Consumption of a Rocket With
Constant Self-acceleration

This case was first, even if not exhaustively, treated by R. Esnault-

Pelterie [3]. A short contribution to this problem was also made by W. L.

Bade [4]. For a rocket which travels with a constant self-acceleration b0,

upon applying Eq. (33), there holds true

-"_ -- (1 -- b° (const.);--_ I -- v2tc2) 3j2 (46)

F
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thus

that is

v=botVl--v2/c2=_Ibot (with v=O for t=O)

Qt- /:I I,V2 C 2

and consequently the velocity

! b0_i_ _c' l-_ _°t (47)

Hence one gets

__ 1 2 1 • 3 b° t T • . •w _, l = _--:,, t +_-4\7 /

and for the acceleration

b= i, = _---b oa 3- b°

=boll l'31tStt 2 1"3'5 1 tbo \4 -] (49)

The inverse of Eq. (47) is now

hot=,_,/_ __=Vi......:_. _,,:c. (5o)

From the integration of Eq. (47) there follows for the path (displacement)
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therefore

_.o t

t c

/ Jb° t c2 z dz c2f c2 c b°dt : --

x=_=_O.o_(_)_,__ _o lJ_+__o
0 0

b° t
,--__b7
"I +z2i ,

!

x /.... ' -- = -- t _: ....= _- t 1 _t 2 1 -i t_ +4.-6 (51)

F
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The inverse of this relation reads

cj box
t (52)

If we measure the time not in the system of the stationary earth ob-

server but in the system of the astronaut traveling along with the rocket

(proper or local time to) , then according to Eq_. (32) and (48) we have the

following r elationship:

t

to: [ l/i-- ,,_ a_:
qv'

0

_tb._*t

f Vi_ i
c c c dz c In (z + Vl_--_z2)

::bo l/" + (5)_ :b-;, ,:bo
0 0 0

thus

t° = _'0In t+

=,[,l(_,)_
The reversed formula reads

{"C £

t==_Sin to =--- eTtO
o 2 bo

1 + t = _o?r Sin t :

+ 2.4.5 ....

(53)

-_ /:to ,+3-, to +:5-,[;to] + .... (s4)
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if one inserts this relation into Eqs. (47), (48), (49), and (51), then the

acceleration, velocity, and displacement of the rocket are obtained as

functions of the local time t O of the astronaut, namely

C°s3 c to

{55)

(56)

"÷Tg(_t°)b°t°[1--315 ""

c_ _ bO_o2[ix=_o[cos(_,o)11=_ ,(_)_ , (_)' ]+_7_ t° +3.4.5.6 to + .... (58)

The relations collected in Table 2 thus hold for the motion of a rocket

with constant self-acceleration b 0.

A rocket which travels with constant self-acceleration b 0 requires,

in order to attain a given distance X, a time

:| ,//_
T / / b0 (59)

in the system of classical physics {Euclidean time);

+

__ {boA'12 1"3 (bo)[t 3: ]
\2_-1

(60)

in the system of the stationary earth observer;

Ar_i.[/(, __'°'i_-'
c ( _oXi:T c_I

to = _oArCos 1 + c2 ] |!/25oX
C 2

T l-- ._2c,.+_.%_! +'--
(61)
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in the system of the astronaut traveling with the rocket (proper or local

time). In general to< T<t. From this the immense gain in time from

the relatlvistic principle can be recognized.

In order to simplify the numerical calculation it is of advantage to

select c/b 0 as the unit of time, c as the unit of velocity, and c2/b 0 as the

unit of length. A11 relations can then be presented as dimensionless. With

c-----3.1010 cm/sec and b0=g--_981 cm/sec _

c _ 3,101° -- 3,06 • 107 s : 354,2 d = 0,97 (years),
g 9SI

c2 9- 1020
.... 9,18 • 1017cm 9,18- lOXZkm = 0,97
g 981

flight years).

The thrust F 0 in the system of the astronaut is, according to Eq. (36),

dm 0
m° b° = I"o _ -- ao dt° " (6?.)

From this the law oi mass decrease is seen immediately to be

or, integrated, with constant outflow velocity a0

mo t o

" dm ° bA ;dto, mo bo
.! mo -- ao.. lnMo= -- _ootO,

,_1. 0

that is upon use of Table ?.

m o
-- e

M o

bo x= _+_+

c

a. = t+ + t

¢ 7 I

,,/,,_ a°l* --l =

2,,° (63)
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c

F o=m ob o=M oboe "° =Mob o t+ , + t =

¢

I box1'( _1 a_ 1+= . 1 -- c2 ! -- 1 = Mob oMob o I ÷cT-_- //

l'-_l
By reversing Eq. (63) one finds

1--(m°i"@" 2[ m°l_

_M°l thus _ 1/i ,"/c 2 _M°]

t.;:-" (_),_c1 + _Mo] 1 +

(64)

(65)

F
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From this there follows for the displacement

! (_01':-_ ] [ (_ot_1'c2 1 - \io! 1
c2(1 c2 +_M°] 1 " = ....

x= ro_-_-' =-Co t,.ot._ 2_0 i,,,ol_
2 _Mo/ \Mol

(66)

and for the time

I m0\_; _

c[_] _1-_opt=_0 =; .... _. -.2to (,,ot_
Wo!

(67)

In contrast to this is, according to Eq. (63), 'he proper or local time

t0 _-_ a°b0 In _0 0 (68)
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IV. Motion of a Rocket with Constant Mass Drive (Thrust) in Free

Space Without External Forces

In this case we again proceed from the equation of motion (36) of the

rocket in the system of the astronaut traveling with the rocket, namely

m 0 i, dm 0
(1--- v2/c2)3.'2 = mo bo : Fo = -- ao c#° ; (69)

In connection therewith the mass drive per second is now

F

3
6

dm o

/10 = -- C/to = const. (70)

The mass thus decreases linearly with the time t O according to the rule

/I 0m0 = M0--/t0t0_M0 l --:y/0t0J, (7|)

in which M 0 is the initial rest mass of the rocket at the time t0=0. If we once
more take the velocity of emanation of the gases a0 =const., then the thrust
also is

F o = ao/t o = const. (7 2)

On the other hand F = P_0 (1 -- V/ao) =t,0(ao-- v) is variable. The self-acceleration

now advances according to the following rule:

b F o ao llo M o
v_'c_'3t21J- b°- - - a° (73)(1 /*o-- m° M° --/l° to 1 -- to

Mo

Because dto=y __v2/c2.dt there then holds

/M0

_ M0dv ao/, o dt° = ao dt°
1 -- v_/c 2 Mo --/_o to 1 #o

-- M_° to
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1 1

[//ti: 11ae 1 a& __

c M o dz z_- dz _ c M o _ z1+

=-- a_ :2 Po ao ao
2 _o z-F 1 + x-

C C _-i-_Ioto

M, M,

consequently because of Eq. (74)

__ Imol 1 c 1

c M o XMoL _ _Utid_ =

x_,'° 17 ]?

_M. 1- I-g to 1- 1-_. oI

) _o 1 a° 1 +
C

,(c_x)
c M o 1--_i+v_l Z--

'2 _o 1 a°
C C

:,-@(_+')1
: + vtcl

1 + a._£o

(79)

In classical physics (c-_, *=ao/c_O)

go over into

formulas (76), (77), and (78)

/t0

M° t = to.a= _/1-- v2/c 2=1, b = bo= ao-
tlo

1 --_otO

F
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For Eqs. (75) and (79) a transition in th(. limit must be performed by

means of the Bernoulli-de l'Hospital formula.

( )2,( 0)_' /t0_ /to t 1-- l--Mo to
1- 1 _ 1 lim =v _ lim = --

[( ;l ,a 0 _---, 0 /t o tO

e 1+1--_

[ ( ;1 /to
=--lim_--2 1-- to

2,-*o/ Moo

1 Mo
-- In -- In

/to m°
1 - _-to

(80)
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and

X

_0

1 1 r
M° lim 1 _Mo] _Mo] _
t_o _-,o _ f -- _ 1 +

-- M° lim 1 -- : ,

M0 (1+_) -- (1--_)

I /_t (_)1.l--e__ £) _0 _10=--M°lim 1 --1 m o (1 " In- -:
/lo ,-_o t 2 [_M0/ Mo

_M0ll_if(l_ _:)l=M0[,_(1 ,"0 '{,__n(, "0,1/1_o l_ /,o - 3_t°) ' , -,Slo °//,

MoI/,0 _ 1 /,o,o,_oOT( _,:o,oi,_t/_,o)1,,o, ,
(8t)

Unfortunately it is not possible to express acceleration, velocity, and

displacement also for the time t, as in the special case of constant self-

acceleration, since Eq. (78) cannot be decomposed according to t o . If one

develops Eq. (78) in a power series

[(_(::o,O)_ ,,,o_"°,o)_t=t° 1-"-a°-)--3_-+3(a°) u 4, =-

()' ]
\Cl i\Cl 5! + ....

(82)

then the reversal reads

[ (_:) t_ (:o)(''°)_= -- --3 -_
3! 4!

' 1' \iof_i + ....(_:)_/_(_;__l}_''°'_
(83)

The values for t o ascertained by means of this series are now

inserted into Eqs. (77), (75), and (79) Jr, order to obtain the acceleration,

velocity, and displacement of the rocket in their dependence on t.

All relations can be exhibited as dimensionless, if we choose /_dr_/_t_
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